IEC 62271-1 PDF

Correspondingly important is their reliable functioning, a clearly defined switching behavior according to specified parameters as well as the protection of personnel and protection against operational interruptions when an overload occurs. The International Electrotechnical Commission IEC has taken up the task of developing the required specifications, their worldwide standardization and further development. The same applies to IEC — the new standard for medium-voltage switchgear. Retrospective IEC — for four decades this abbreviation was the decisive factor for the type testing of metal-enclosed switchgear. In the meantime there are tens of thousands of switchgear panels of the primary and secondary distribution level based on this standard in use — certified according to the mandatory part of the standard and, if required, according to optional tests. The passing of the following tests was obligatory in order to identify switchgear as type-tested: Dielectric test to verify the insulation level of the switchgear tests with rated lightning impulse withstand voltage and rated short-duration power frequency withstand voltage with the specifi ed values depending on the respective rated voltage.

Author:Sagor Mezibei
Country:Sao Tome and Principe
Language:English (Spanish)
Genre:Career
Published (Last):10 November 2016
Pages:249
PDF File Size:6.60 Mb
ePub File Size:3.87 Mb
ISBN:806-6-23470-589-5
Downloads:95667
Price:Free* [*Free Regsitration Required]
Uploader:Saran



Correspondingly important is their reliable functioning, a clearly defined switching behavior according to specified parameters as well as the protection of personnel and protection against operational interruptions when an overload occurs. The International Electrotechnical Commission IEC has taken up the task of developing the required specifications, their worldwide standardization and further development.

The same applies to IEC — the new standard for medium-voltage switchgear. Retrospective IEC — for four decades this abbreviation was the decisive factor for the type testing of metal-enclosed switchgear.

In the meantime there are tens of thousands of switchgear panels of the primary and secondary distribution level based on this standard in use — certified according to the mandatory part of the standard and, if required, according to optional tests.

The passing of the following tests was obligatory in order to identify switchgear as type-tested: Dielectric test to verify the insulation level of the switchgear tests with rated lightning impulse withstand voltage and rated short-duration power frequency withstand voltage with the specifi ed values depending on the respective rated voltage.

Temperature rise tests to verify the current carrying capacity with rated normal currents. Peak and short-time withstand current tests to verify the dynamic and thermal current carrying capacity of the main and earth circuits; the tests are performed with rated peak short-circuit current or rated short-circuit making current or rated shorttime current or rated short-circuit breaking current.

Mechanical function test to verify the mechanical functions and interlocks. Degree of protection tests to verify the protection against electric shock and foreign objects. Pressure and strength tests to verify the gas tightness and pressure resistance for gas-fi lled switchgear. There is also the possibility of voluntarily certifying switchgear for resistance to internal arc faults and for personal protection.

Manufacturers and operators can select the criteria which are relevant to them from the following six criteria and have them tested. Criterion 1: Doors and covers must not open.

Criterion 2: Parts of the switchgear must not fl y off. Criterion 3: Holes must not develop in the external parts of the enclosure. Criterion 4: Vertical indicators must not ignite. Criterion 5: Horizontal indicators must not ignite. Criterion 6: Earth connections must remain effective. In order to guarantee safe access to the individual switchgear components, e. Metal-clad switchgear Division of the switchgear panel into four compartments busbar compartment, switching-device compartment, connection compartment and low-voltage compartment ; partitions between the compartments made of sheet steel, front plate made of sheet steel or insulating material.

Compartmented switchgear Division of the switchgear panel same as for metal-clad switchgear, but with the partitions between the individual compartments made of insulating material. Cubicle-type switchgear All other types of construction that do not meet the above features of the metal-clad or compartmented designs. In this context, access to the then common minimum-oil-content circuit-breakers for maintenance work without longer operational interruptions was of prime importance because of the limited number of operating cycles.

Therefore, with switchgear in metalclad or compartmented design, the busbar in the busbar compartment and the incoming cable in the connection compartment could remain in operation. With a cubicletype design, the incoming cable had to be isolated, but the busbar itself could remain in operation.

Above all, the appearance of maintenance- free vacuum circuit-breakers, with operating cycles far exceeding the normal number, made frequent access to this circuit-breaker no longer of prime importance. The vacuum arc-quenching principle is technologically so superior to other arc-quenching principles that the circuit-breaker can be fixed-mounted again.

This resulted in the first-time use of gas insulation with the important features of climatic independence, compactness and maintenance-free design. However, both technologies — the vacuum arc-quenching principle and gas insulation — were not adequately taken into account in the existing standard.

Therefore, at the end of the nineties, the responsible IEC committees decided on the reformulation of the switchgear standard, which finally came into effect as IEC in November At the same time the old IEC standard was withdrawn without any transition period. Four key features are of special note with the new IEC standard: 1. Changed dielectric requirements According to IEC , two disruptive discharges were permitted in a series of 15 voltage impulses for the test with rated lightning impulse withstand voltage.

According to the new standard, the series must be extended by another fi ve voltage impulses if a disruptive discharge has occurred during the fi rst 15 impulses. This can lead to a maximum of 25 voltage impulses, whereas the maximum number of permissible disruptive discharges is still two.

Increased demands on the circuit breaker and earthing switch In contrast to the previous standard, the switching capacity test of both switching devices is no longer carried out as a pure device test. Instead, it is now mandatory to carry out the test in the corresponding switchgear panel. The switching capacity may get a negative infl uence from the different arrangement of the switchgear with contact arms, moving contacts, conductor bars, etc.

For this reason, the test duties Ts and Ta from the IEC standard are stipulated for the test of the circuitbreaker inside the switchgear panel. The assignment is no longer according to the constructional description metalclad, compartmented or cubicle-type design , but according to operator-related criteria.

Stricter internal arc classification Significantly stricter changes have also been implemented here. The energy flow direction of the arc supply, the maximum number of permissible panels with the test in the end panel and the dependency of the ceiling height on the respective panel height have been redefined.

In addition, the five following new criteria must always be completely fulfilled no exceptions are permitted : Covers and doors remain closed. Limited deformations are accepted. No fragmentation of the enclosure, no projection of small parts above 60 g weight. No holes in the accessible sides up to a height of 2 meters. Horizontal and vertical indicators do not ignite due to the effect of hot gases. The enclosure remains connected to its earthing parts.

For the internal arc classifi cation of substations with and without control aisle, the testing of the substation with installed switchgear is mandatory in the new IEC standard. The classification of the substation is only valid in combination with the switchgear used for the test.

The classification cannot be transferred to a combination with another switchgear type as each switchgear behaves differently in the case of an internal arc pressure relief equipment with different cross-sections and pickup pressures, different arcing conditions because of different conductor geometries. It helps you to shape up your technical skills in your everyday life as an electrical engineer.

CLIENT SERVER COMPUTING BY DAWNA TRAVIS DEWIRE PDF

327182868-IEC-62271-1-PARTE-1.pdf

.

LIBER LIBERI VEL LAPIDIS LAZULI PDF

List of International Electrotechnical Commission standards

.

Related Articles